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Abstract

Pesticides contribute to human welfare by reducing vector-borne diseases and protecting crops against pests. Insecticides
are the most widely employed pesticides for agricultural, domestic, and industrial pest control. However, some insecticides
such as synthetic pyrethroids, analogs of the natural pyrethrin, persist in the environment and result in different hostile effects
on nontarget organisms. Due to a continuous increase in the use of pyrethroids and their widespread application, different
generations and types of pyrethroids have been frequently reported from environmental media, biota, and residential areas.
Synthetic pyrethroids are observed to be less toxic to mammal and birds, relatively toxic to amphibians, and highly toxic to
aquatic organisms including fish. Here, we review the occurrence, fate, biotransformation, and bioavailability of pyrethroids
in waters. We also present biomarkers used to evidence toxicological effects of pyrethroids on fish. Toxic effects include
oxidative stress and damage such as production of reactive oxygen species and lipid peroxidation; neurological behavioral
inconsistencies; developmental effects such as delayed development and signaling; biochemical alterations of protein, glu-
cose, and enzymes; hematological changes in white blood cells, red blood cells, and hemoglobin; physiological effects on
metabolism and heart function; histopathological changes in the brain, liver, and gills; molecular toxicity including DNA
damage, micronuclei induction, and altered gene or mRNA expression; and reproductive or endocrine disruption, e.g., dis-
rupted pathways and signaling. Mechanisms of toxicity and control measures are also discussed.

Keywords Pesticides risk assessment - Synthetic pyrethroids - Oxidative stress - Toxicological endpoints - Multiple
biomarkers - Mechanism of action

Introduction Ali and Khan 2018; Khristoforova et al. 2018; Ullah and Li
2018). Pesticides are employed to repel, deter, or kill target

The human race made enormous progress; however, revo-  organisms such as insects, algae, fungi, and bacteria in agri-

lutionary achievements are coupled with environmental off-
putting factors such as vast use and release of drugs, heavy
metals, fertilizers, and pesticides (Stankovic et al. 2014;
Ullah et al. 2016a; Vieira et al. 2017; Afridi et al. 2018;
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cultural fields, public places such as homes, hospitals, and
parks, industries, and public health programs (Ullah et al.
2019). With advancements in the field of pesticides chem-
istry, the numbers of pesticides are growing continuously.
Different types of pesticides are used for targeting different
types and/or species of organisms. The use of these pesti-
cides is a major reason of elevating the standard of human
life by different ways such as protecting the crops in the
fields and stored food, destroying breeding site of different
diseases causing insects, controlling harmful microorgan-
isms including bacteria and viruses, and vanishing exasper-
ating flies (Gill et al. 2018; Ullah et al. 2018a).

Different classes of pesticides
Pesticides are synthesized commercially and used under dif-

ferent names, belonging to different types and classes. The
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different classes of pesticides are employed based on their
target organisms such as virucides against viruses, avicides
against birds, algicides against algae, fungicides against
fungi, nematicides against nematodes, rodenticides against
rodents, herbicides against herbs, bactericides against bac-
teria, and acaricides or insecticides against insects (Regnery
et al. 2018; Singh et al. 2018a; Valle et al. 2018). Among dif-
ferent classes of pesticides, insecticides are the most widely
employed ones and attribute to about 80% of the use of the
total pesticide (Ullah et al. 2018b). There are different reg-
istered classes of insecticides including organochlorines,
carbamates, organophosphates, formamidines, organotins,
organosulfurs, avermectins, neonicotinides, ryanodine, and
rotenone, among others (Ullah et al. 2016b, c¢; Yang et al.
2018). However, one of the late introduced and most widely
employed classes of insecticides is synthetic pyrethroids.

Introduction to pyrethroids

Pyrethroids are derived synthetically from pyrethrins, which
are extracted from the flower of a plant, Chrysanthemum
cinerariaefolium (Ullah 2015). Pyrethrins are insecticidal in
nature due to the presence of ketoalcoholic esters of strongly
lipophilic pyrethroic and chrysanthemic acids, having the
capability of rapidly penetrating into insect bodies and lead-
ing to toxicosis. However, being highly sensitive to light
natural pyrethrins break down within a few hours and cannot
bioaccumulate in a sufficient concentration or amount to kill
insects. With the help of modified structures, formulations,
and stereochemistry, thousands of synthetic pyrethroids are
developed. These modifications include cyano group addi-
tion, mixing of optical and geometric isomers, halogenation
of the cyclopropane side chain of the pyrethrin molecule,
adding different solvents and carriers, and different technical
grade formulations (Kaviraj and Gupta 2014). These pyre-
throids have a wide range of chemical and biological prop-
erties and performance; therefore, suitable pyrethroids are
employed in agricultural fields, industries, parks, orchards,
and homes (Ullah et al. 2018b).

Biotransformation and environmental fate
of synthetic pyrethroids

The routes for the elimination of synthetic pyrethroids in
the environmental media include microbial degradation,
photodegradation, volatilization, and hydrolysis (Gan et al.
2005). However, in the biological systems, pyrethroids are
detoxified by two pathways—esterase-dependent hydrolytic
reaction and oxidative reaction mediated by cytochrome
P450s. The main factors recognized for nontarget organisms’
susceptibility against synthetic pyrethroids are toxicoki-
netic factors. Synthetic pyrethroids are degraded through
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esterase-based hydrolysis followed by cytochrome P450s-
based oxidation easily; therefore, they are relatively less
toxic to mammals (Gammon et al. 2012). However, pyre-
throids are highly toxic to fish because they lack hydrolase
and therefore cannot swiftly detoxify synthetic pyrethroids
hydrolytically like mammals (Yang et al. 2016). The only
metabolic pathway of synthetic pyrethroids in fish is oxida-
tive reaction catalyzed by cytochrome P450s. Different non-
specific metabolites of the synthetic pyrethroids have been
recognized, such as 3-phenoxybenzoic acid, 3-phenoxyben-
zaldehyde, 3-phenoxybenzyl alcohol, 3-phenoxybenzoic
acid, and 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane
carboxylic acid. The transformation and degradation of com-
pounds in the environment depend upon their physicochemi-
cal properties (Singh et al. 2016). Synthetic pyrethroids
have the property of hydrophobicity and are insoluble in
water with an n-octanol distribution coefficient 6.6 in water.
They are stable and persist in the aquatic sediments and soil
(Gammon et al. 2012). Figure 1 shows some toxicological
impacts, some metabolites, environmental fate or degrada-
tion, and biotransformation of synthetic pyrethroids.

Bioavailability of synthetic pyrethroids
in the aquatic environment

Synthetic pyrethroids lead to aquatic bodies through run-
offs from the sprayed agricultural fields, parking lots, indus-
tries, and public health programs through spray drift to some
extent; however, the main source of bioavailability in the
water bodies is flowing therethrough rainstorm events. The
magnitude and frequency of synthetic pyrethroids use and
their precipitation patterns are observed to be critical factors
governing synthetic pyrethroids transport to water bodies
(Oros and Werner 2005). Moreover, the breakdown rates
of the pyrethroids such as persistence on the soil surface,
temperature, and canopy cover in association with their
precipitation events may play a specific role in the deter-
mination of concentrations of synthetic pyrethroids in the
runoffs (Palmquist et al. 2012). The concrete drainage sys-
tem may transport a higher concentration of aqueous-phase
pyrethroids in the urban and suburban areas as compared to
earthen ditches channeled from agricultural particulate-rich
runoffs (Weston and Lydy 2010).

Synthetic pyrethroids in the environment

Owing to the widespread applications of synthetic pyre-
throids, these are reported from various parts of the world.
Table 1 shows the reported concentrations of different syn-
thetic pyrethroids from the soil, and land organisms or their
products, whereas Table 2 shows the reported concentra-
tion of different synthetic pyrethroids from sediments, water,
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Fig. 1 Synthetic pyrethroids (SPs) exposure leads to different toxi-
cological impacts in the exposed organisms such as the induction of
oxidative stress followed by oxidative damage, neurotoxicity, hema-
tological toxicity, biochemical toxicity, and developmental toxicity.
Some metabolites of synthetic pyrethroids have been identified, and
their exposure led to different immunotoxicity, endocrine disruption,
and reproductive toxicity. Pyrethroids get degraded by microbial deg-

fish, and other aquatic organisms from different countries
across the globe. The range is given for individual synthetic
pyrethroids, such that any of them observed in minimum and
maximum concentrations. Synthetic pyrethroids are divided
into two types, type I and type II. Type I pyrethroids are
non-cyano pyrethroids, while type II pyrethroids contain
the a-cyano group. Figure 2 shows the chemical structure
of widely employed esters of synthetic pyrethroids of dif-
ferent generations from both type I and type II groups,
whereas Fig. 3 shows the chemical structure and formulae

Fish
v > No Hydrolase

<only >

Oxidative Reaction
(Cytochrome P450s)

radation, photodegradation, hydrolysis, and volatilization. Moreover,
pyrethroids are biotransformed easily by mammals through hydro-
lytic (esterase) and oxidative (cytochrome P450s) reactions. There-
fore, pyrethroids are less toxic to them. However, fish lack hydrolase
and metabolize synthetic pyrethroids through oxidative (cytochrome
P450s) reaction only. Therefore, they are highly toxic to fish and other
aquatic organisms

of different esters of natural pyrethrin isolated from C. cin-
erariaefolium. Type Il pyrethroids are considered to be more
severely neuro-intoxicating as compared to type I, solely due
to the presence of an a-cyano group (Soderlund et al. 2002).
Table 3 shows the acute toxic concentrations of type II syn-
thetic pyrethroids against different fish species. Synthetic
pyrethroids are widely used across the globe due to their
low toxicity to mammals and birds. However, synthetic pyre-
throids are known to pose marked hostile effects on aquatic
organisms, more specifically on fish (Assis et al. 2009).
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Table 1 Concentrations of pyrethroids from the soil, cash crops, and land/terrestrial organisms and/or their products across the globe

Detected pyrethroids

Conc. (min—-max)

References

Bifenthrin, fenpropathrin, cyhalothrin,
cypermethrin, fenvalerate, and del-
tamethrin

Cypermethrin

Bifenthrin and cyhalothrin
A-Cyhalothrin and cyfluthrin
A-Cyhalothrin

Fenvalerate

Cypermethrin

Cypermethrin, cyhalothrin, and del-
tamethrin

Bioallethrin and permethrin
Cypermethrin and fenvalerate

Permethrin, cypermethrin, deltame-
thrin, A-cyhalothrin, and fenvalerate

p-Cyfluthrin, decamethrin, fenvalerate,
permethrin, and bifenthrin

A-Cyhalothrin, cypermethrin, fen-
propathrin, fenvalerate, bifenthrin,
cyfluthrin, and deltamethrin

Bifenthrin, fenpropathrin, cyhalothrin,
fenvalerate, deltamethrin, and cyper-
methrin

Bifenthrin, fenpropathrin, fenvalerate,
and A-cyhalothrin

Amethrin and fenpropathrin

Cypermethrin and bifenthrin

Allethrin, permethrin, and deltamethrin

Cyhalothrin, bifenthrin, cypermethrin,
permethrin, fenvalerate, decamethrin,
fenpropathrin, and cyfluthrin

Bifenthrin, A-cyhalothrin, permethrin,
cyfluthrin, cypermethrin, fenvalerate,
and deltamethrin

Tetramethrin, fenpropathrin, cyperme-
thrin, deltamethrin, fenvalerate, and
permethrin

Cyhalothrin, cyfluthrin, cypermethrin,
fenvalerate, and deltamethrin

Cypermethrin

A-Cyhalothrin

Cyhalothrin, cypermethrin, fenvalerate,
and deltamethrin

Cyhalothrin, fenvalerate, and perme-
thrin

S.no. Country

Soil (ng/g)

1 China

2 Pakistan

3 China

4 China

5 Togo

6 India

7 China

8 China

9 USA

10 India

11 Spain

Cash crops (ng/g)

1 Singapore (vegetables)

2 China (fruits: apple, pear, peach, and
grape)

3 China (jujubes and persimmon)

4 China (dates)

5 Brazil (sweet pepper)

6 Poland (apple, orange, and cabbage)

7 Ghana (eggplant, okra, and tomato)

8 China (vegetables)

9 Ghana (okra)

10 Thailand (fruits/vegetables)

11 Mexico (vegetables)

12 Philippines (eggplant)

Land/terrestrial organisms and/or their products (ng/g and/or ng/L)

1 France (Partridge (Perdix perdix) eggs)

2 India (bovine milk)

3 Egypt (honeybee)

4 Egypt (honey)

Brazil (honey from: Apis mellifera)

Brazil (honey from: Melipona sub-
nitida)

Cyhalothrin, permethrin, and fenvaler-
ate

Bifenthrin
Bifenthrin

0.00-400.0

0.07-1184.0
0.00-2.50
7.50-38.00
0.00-3.73
0.00-19.17
5.00-36.00
0.00-60.30

1.97-724.19
0.00-35.00
4.00-60.00

4.17 (Avg.)

5.00-1208.00

59.40-2945.0

3.30-1100.00

53.60 (Avg.)
20.00-300.00
3.00-133.00
8.00-260.00

100.00-4100.00

10.00-770.00

4.00-573.00

10.00-30.00

0.34x107°
0.50-0.90

1.30-2.70
1.30-19.00

0.28-2.50
0.092-2.50

Liu et al. (2016)

Rafique et al. (2016)
Zhu et al. (2015)

Liu et al. (2015)
Mawussi et al. (2014)
Murugan et al. (2013)
Qiang et al. (2013)
Yao et al. (2011)

Riederer et al. (2010)
Kumari et al. (2008)
Fernandez-Alvarez et al. (2008)

Yu and Yang (2017)

Liet al. (2016)

Liu et al. (2016)

Yun et al. (2015)

Kemmerich et al. (2015)
Szpyrka (2014)

Akoto et al. (2015)

Liet al. (2014)

Essumang et al. (2013)

Wongsa and Burakham (2012)

Aldana-Madrid et al. (2011)

Lu (2011)

Bro et al. (2016)
Bedi et al. (2015)

Malhat et al. (2015)
Malhat et al. (2015)

Pacifico da Silva et al. (2015)
Pacifico da Silva et al. (2015)
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Table 1 (continued)

Conc. (min—max)

References

S.no. Country Detected pyrethroids

7 France (honey) Cypermethrin, deltamethrin, esfenvaler-
ate, bifenthrin, permethrin, resme-
thrin, and A-cyhalothrin

8 India (frog species: Fejervarya limno-  Esfenvalerate

charis and Haplobatrachus crassus)

9 China (mutton) Tetramethrin and cyhalothrin

10 China (acacia honey) Etofenprox, meperfluthrin, cyperme-
thrin, and tetramethrin

11 China (vitex honey) Etofenprox, meperfluthrin, cyperme-
thrin, and tetramethrin

12 Brazil (female dogs: Canis lupus) Allethrin, cyhalothrin, cypermethrin,
deltamethrin, and tetramethrin

13 USA (honey and honeybee) Allethrin, cypermethrin, bifenthrin,

cyfluthrin, cyhalothrin, deltamethrin,

0.20-70.00

26.91-42.15

2.10-114.50
0.00-2.60

0.00-3.90

2000.00-55,000.00

24.00-19,600.00

Paradis et al. (2014)

Kittusamy et al. (2014)

Gao et al. (2012)
Zhang et al. (2011)

Zhang et al. (2011)
Andrade et al. (2010)

Johnson et al. (2010)

fluvalinate, flumethrin, permethrin,
prallethrin, and tefluthrin

Keeping in view the toxic effects of synthetic pyrethroids
on fish, different biomarkers are used to delineate their toxic
impacts as well as envisaging biomarkers for future research.

Biomarkers of pyrethroid toxicity in fish

Biomarkers are indicators of the response of exposure to
any toxicant, chemical, pollutant, or any other foreign parti-
cle. Biomarkers can be evaluated at a molecular or cellular
level to community or ecosystem level. These biomarkers
can substantially reveal the toxic effects of the toxicant on
the exposed organism, such as toxicities on their neurol-
ogy resulting in altered behavior, histopathological, mor-
phological, anatomical, physiological, hematological, and
biochemical profiles. Table 4 presents various toxic effects
of pyrethroids to biomarkers in different fish species.

Pyrethroid-induced oxidative stress or damage
in fish

Oxidative stress is widely employed as a sensitive biomarker
in ecotoxicological assessments in order to understand the
underlying hostile effects. The oxidative stress is evaluated
in terms of reactive oxygen species (ROS) or free radicals’
production, increased lipid peroxidation, and altered activi-
ties of the antioxidant enzymes in response. ROS produc-
tion leads to oxidative damage at the cellular level to DNA,
lipids, and protein (Ullah et al. 2018a). To cope with the
oxidative damage and to defend the cell against free radicals,
different stress proteins such as heat-shock proteins, glucose-
regulating proteins, and antioxidant enzymes including cata-
lase, peroxidases, superoxide dismutase, glutathione reduc-
tase, glutathione-S-transferase, and glutathione peroxidase

are produced. However, when the production of the free
radicals exceeds the potential of the defense system of the
exposed organisms, it leads to different levels of oxidative
damage such as DNA damage (Ullah et al. 2017). Research
revealed that synthetic pyrethroids-induced oxidative stress
leads to the different type of instant toxicities as well as tox-
icities and weak immunity at later stages in fish. In response
to the oxidative stress, the fish adapt defensive mechanism
by changing their antioxidant enzymatic activities such as
increasing their activities to cope with the free radicals.

Exposure to different synthetic pyrethroids induced oxi-
dative stress in different species of fish, for example, cyper-
methrin induced oxidative stress in different tissues of Tor
putitora (Ullah et al. 2014), Labeo rohita (Ullah 2015), and
Oncorhynchus mykiss (Kutluyer et al. 2015), cyhalothrin
induced oxidative stress in different tissues of Cyprinus car-
pio (Clasen et al. 2018) and Prochilodus lineatus (Vieira and
dos Reis Martinez 2018), and deltamethrin induced oxida-
tive stress in different tissues of Cyprinus carpio (Ensibi
et al. 2013), Sparus aurata (Guardiola et al. 2014), Oreo-
chromis niloticus (Abdel-Daim et al. 2015), Danio rerio
(Parlak 2018), and Hypophthalmichthys molitrix (Ullah
et al. 2019).

Neurotoxicity

Pyrethroids exert toxic effects on the nervous system of
the fish by affecting their sodium channels. They attached
to these gated channels and delay the inactivation of the
Na* channels, which ultimately led to neuronal excitabil-
ity (Ullah et al. 2019). However, recent research revealed
that synthetic pyrethroids also affect the other voltage-
gated channels such as calcium and chloride channels, and
receptor of y-aminobutyric acid as their secondary targets

@ Springer
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Table 2 (continued)

References

Conc. (min—max)

Detected pyrethroids

S.no. Country

Other aquatic organisms (ng/g)

Hernandez-Guzman et al. (2017)

Kuivila et al. (2012)

1.70-4.90
0.50-11.2

Permethrin, cypermethrin, and bifenthrin

Mexico (mussel: Mytilus californianus)

USA (Hyalella azteca)

Bifenthrin, cyhalothrin, cypermethrin, permethrin, and

2

resmethrin

Alonso et al. (2012)

0.18-18.9 (Adults)
0.10-11.0 (Juveniles)
0.10-31.6 (Calves)

Fenvalerate, tetramethrin, bifenthrin, tetramethrin,

Brazil (dolphins’ liver: Pontoporia blainvillei)

3

fluvalinate, A-cyhalothrin, permethrin, cyfluthrin, and

cypermethrin

Alonso et al. (2012)

2.5-4.8 (Total SPs conc.)

Fenvalerate, tetramethrin, bifenthrin, tetramethrin,

Brazil (dolphins’ breast milk: Pontoporia blainvillei)

4

fluvalinate, A-cyhalothrin, permethrin, cyfluthrin, and

cypermethrin

Fenvalerate, tetramethrin, bifenthrin, tetramethrin, 331.0-1812.0 (Total SPs conc.) Alonso et al. (2012)

Brazil (dolphins’ placenta: Pontoporia blainvillei)

5

fluvalinate, A-cyhalothrin, permethrin, cyfluthrin, and

cypermethrin

(Soderlund 2012). Disturbance to these channels leads to
different neurobehavioral changes. Moreover, the neurotoxic
effects lead to complex consequences such as affected energy
metabolism, neuromuscular functions, neural transduction,
and homeostasis. Figure 2 shows the neurotoxic effects of
synthetic pyrethroids, their mechanisms, and subtle conse-
quences. The neurotoxic effects can be in the form of dis-
turbed voltage-gated channels, behavioral inconsistencies or
alterations, and inhibition of acetylcholinesterase activity.

Behavioral inconsistencies and alterations

Research revealed that exposure to synthetic pyrethroids
resulted in different behavioral inconsistencies in fish, such
as sluggish movement, disturbed swimming or swimming
pattern, inability to maintain their position, reduced feeding,
interrupted school behavior, hypo- or hyperexcitability, dan-
gling or irregular or erratic swimming, increased opercula
movements, rapid jerky movements, loss of equilibrium,
frequently surfacing, adapting vertical position, sinking to
bottom, hypo- or hyperactiveness, jumping, loss of balance,
motionlessness, and disturbed migratory pattern in different
fish species such as Tor putitora (Ullah et al. 2014), Labeo
rohita (Ullah 2015), and Clarias batrachus (Kumar et al.
2011b). The acetylcholinesterase is active at both the neural
and neuromotor junctions of the muscle tissues; therefore,
the neuromuscular inhibition of acetylcholinesterase leads
to blocked neural transmission and increased acetylcholine
at the nerve endings, which consequently lead to different
behavioral inconsistencies. Therefore, these alterations are
often associated with the inhibition of acetylcholinesterase
activity in the brain or muscles of the fish and/or increment
in the level of acetylcholine.

Inhibition of acetylcholinesterase activity

A number of research studies revealed that synthetic pyre-
throids induce neurotoxic effects by inhibiting the activity
of acetylcholinesterase or incrementing the level of acetyl-
choline in the brain of various fish tissues. The inhibition
of acetylcholinesterase results in nerve impulses and makes
them permeable to sodium. Synthetic pyrethroids delay the
closing of sodium channels, allowing sodium inflow in a
heavy concentration, which consequently leads to multiple
never impulses, which in turn release a neurotransmitter,
acetylcholine, leading to their higher accumulation in the
nerve synapses and ultimately decreased cholinergic trans-
mission and other neurotoxic effects. In fish, these effects are
increased operculum movement, convulsions, and surfacing
(Singh et al. 2018b). Deltamethrin exposure resulted in inhi-
bition of the acetylcholinesterase in the brain of silver carp
resulting in erratic swimming, vertical position adaptation,
hyperactivity, and equilibrium loss as well as in the muscle

@ Springer
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Subtle Consequences inclu
(1) Intoxication

(2) Neurotoxic effects

(3) Behavioral inconsistencies
(4) Paralysis
(5) Cell Death

Multiple Nerve
Impulses

/
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I

I

S a

A. Deltamethrin i

N B. Cypermethrin i

[H] @ C. Allethrin i

°\/©\o/© D. Bifenthrin !
O E. Permethrin :

R_F F. Resmethrin i

VE%Q F7\_ G. Fenvalerate !
[} cl 0 H. Cyhalothrin l

Fig.2 Synthetic pyrethroids (SPs) induced neurotoxicity (mecha-
nism and subtle consequences) and chemical structures of different
SPs [type I (without a-cyano group) including allethrin (first genera-
tion), permethrin (second generation), resmethrin (third generation),

tissues that resulted in the desensitization of the receptors of
nicotine acetylcholine and subsequently resulted in muscular
weakness and changed swimming pattern (Ullah et al. 2019).

Developmental toxicity

Synthetic pyrethroids are reported to exhibit greater
acute toxic effects on the developing stages of animals
as compared to adult stages (Yang et al. 2018). However,
fish is highly sensitive and more susceptible to synthetic
pyrethroids during their early life stages as compared to
their adult stage (Yang et al. 2014). Synthetic pyrethroids
also have the capability of affecting the development and
growth of various animals (DeMicco et al. 2010). There
is a continuously growing body of evidence, revealing
the developmental toxicity of different pyrethroids on

@ Springer

and bifenthrin (fourth generation), while type II (with a-cyano group)
including fenvalerate (third generation), cyhalothrin (fourth genera-
tion), cypermethrin (fourth generation), and deltamethrin (fourth gen-
eration)]

nontarget organisms, more specifically against fish, for
example, exposure to bifenthrin accelerated hatching and
impaired the normal morphology of Danio rerio, same
as by cypermethrin, by inducing craniofacial abnormali-
ties, pericardial edema, body curvatures, yolk edema, and
crooked body (DeMicco et al. 2010; Jin et al. 2009; Shi
et al. 2011). Similarly, joint exposure of Danio rerio to
cypermethrin and permethrin led to different toxicities at
larval stage (Yang et al. 2014), bifenthrin disturbed the
dopaminergic signaling at the juvenile stage of Onco-
rhynchus mykiss (Crago and Schlenk 2015), cypermethrin
induced different developmental deformities and altered
the enzymatic activities in the developmental stages
of Labeo rohita (Dawar et al. 2016), and deltamethrin
induced oxidative stress leading to apoptosis and different
morphological alterations in Danio rerio (Parlak 2018).
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Mechanism of Action

@ Production of reactive oxygen species

@ Interrupt Na® Channel gate closing Synaptic end bulb

@ Direct Effect on Ca*
@ Increases cytosolic Ca+

@ Inhibits amino butyric acid receptor

@ Affects ATP

@ ACh Pathological retention in synaptic gap

Cytoplasm

Genotoxicity / DNA damage

Fig.3 The isolated pyrethrins from Chrysanthemum cinerariaefo-
lium flowers with their chemical structures and formulae—the shown
pyrethrins are esters of natural pyrethrum. Mechanism of action of
synthetic pyrethroids (SPs): (1) SPs exposure results in the produc-
tion of excessive reactive oxygen species (ROS) that leads to detri-
mental effects on lipids, proteins, and DNA, (2) SPs interrupt ligand-
gated channel and allow inflow of sodium in a higher concentration
which leads to multiple nerve impulses and ultimately to inhibition
of acetylcholinesterase and accumulation of acetylcholine, which
stimulate other nerves, (3) SPs affect voltage-gated calcium chan-

Hematological toxicity

Hematology is often assessed as a useful biomarker in
eco-, aquatic, pesticides, and fisheries toxicology. Synthetic
pyrethroids exposure results in different hematotoxic effects
because after entering into the fish body, blood and blood-
producing hematopoietic tissues are continuously exposed to
the destructive effects of the respective pyrethroid. Exposure
of Tor putitora to the acute concentration of cypermethrin
led to an increase in white blood cells and a decrease in red
blood cells (Ullah et al. 2015). Similarly, a number of studies
reported different types of toxic effects on the hematologi-
cal profile including white blood cells such as lymphocytes,
thrombocytes, granulocytes, and monocytes, red blood
cells, hemoglobin, packed cell volume, mean corpuscular
volume, mean corpuscular hemoglobin concentration, and

Neurotransmllter/l‘ 1l
receptor

nel and consequently (4) increase calcium concentration in the cyto-
sol that consequently lead to cytotoxicity, (5) SPs inhibit receptor of
y-aminobutyric acid that consequently inhibits GABA receptor and
ultimately leads to excitability and convulsion, (6) SPs disturb ATP
formation/synthesis directly as well as glucose regulation is disturbed
in response to cortisol regulation, (7) SPs exposure leads to the reten-
tion of acetylcholine in the synaptic gap (due to closing of synaptic
cleft) which increases acetylcholine level, and (8) SPs lead to geno-
toxicity either by oxidative stress induction or due to accumulation of
calcium in a higher concentration in the cytosol

mean corpuscular hemoglobin of different fish species after
exposure to different synthetic pyrethroids such as Cypri-
nus carpio (Velisek et al. 2009a), Catla catla (Vani et al.
2012), Rhamdia quelen (Montanha et al. 2014), and Albur-
nus tarichi (Ozok et al. 2018) in response to cypermethrin,
Catla catla (Vani et al. 2011) and Salmo trutta fario (Karatas
2016) in response to deltamethrin, and Prochilodus linea-
tus in response to A-cyhalothrin (Vieira and dos Reis Mar-
tinez 2018). The alterations in the hematological parameters
including red blood cells might be attributed to the inhibi-
tion of hemosynthesis or erythropoiesis, destruction of blood
cells such as red blood cells (anemia), decreased genesis of
the red blood cells due to hypoxia, less hemoglobin or no
hemoglobin, hematopoietic system’s failure, and osmoregu-
latory dysfunction, whereas white blood cells may be altered
due to the stimulated defense mechanism or immune system

@ Springer
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Table 3 Acute toxic concentrations (LCs) of different type II synthetic pyrethroids against different fish species

S. no. Fish species LCs, References

Deltamethrin

1 Hypophthalmichthys molitrix 2.0 ug/L (96 h) Ullah et al. (2019)

2 Colossoma macropomum 55.0 pg/L (96 h) Cunha et al. (2018)

3 Channa punctatus 7.33 ug/L (96 h) Singh et al. (2018b)

4 Ctenopharyngodon idella 0.331 pg/L (96 h) Srinivasa Rao et al. (2018)
5 Clarias gariepinus 51.89 pg/L (96 h) Hamed (2016)

6 Salmo trutta fario 4.7 ug/L (96 h) Karatas (2016)

7 Labeo rohita 0.38 mg/L (96 h) Suvetha et al. (2015)

8 Cirrhinus mrigala 8.0 mg/L (96 h) David et al. (2015)

9 Anabas testudineus 0.07 mg/L (96 h) Sapana Devi and Gupta (2014)
10 Channa punctatus 0.75 mg/L (96 h) Jayaprakash and Shettu (2013)
11 Clarias gariepinus 0.75 pg/L (48 h) Amin and Hashem (2012)
12 Xiphophorus helleri 2.87 pg/L (96 h) Khalili et al. (2012)

13 Oreochromis niloticus 1.70 pg/L (48 h) Kan et al. (2012)

14 Catla catla 4.84 ng/L (96 h) Vani et al. (2011)

15 Oncorhynchus mykiss 0.3 and 0.6 ug/L Atamanalp and Erdogan (2010)
16 Heteropneustes fossilis 1.5 mg/L (96 h) Srivastav et al. (2010)

17 Puntius chrysopterus 14.2 pg/L (96 h) Pawar et al. (2009)

18 Labeo rohita 1.00 mg/L (96 h) Rathnamma et al. (2009)
19 Danio rerio 0.5-1.0 ug/L (96 h) Koc et al. (2009)

20 Poecilia reticulata 19.0 pg/L (96 h) Stalin et al. (2008)

21 Oreochromis niloticus 14.6 pg/L (96 h) El-Sayed and Saad (2008)
22 Oncorhynchus mykiss 20 pg/L (96 h) Velisek et al. (2007)

23 Carassius auratus 2.0 ug/L (48 h) Costin et al. (2007)

24 Silurus glanis 0.686 pg/L (48 h) Kopriicii et al. (2006)

25 Oreochromis niloticus 4.85 ug/L (48 h) Yildirim et al. (2006)

26 Oncorhynchus mykiss 0.7 pg/L (96 h) Ural and Saglam (2005)
27 Cyprinus carpio 0.074 pg/L (48 h) Kopriicti and Aydin (2004)
Cypermethrin

1 Cirrhinus mrigala 0.85 ug/L (96 h) Singh (2017)

2 Oreochromis niloticus 4.85 (Commercial) and 9.74 (technical grade) pg/L (96 h) Majumder and Kaviraj (2017)
3 Heteropneustes fossilis 0.075 ml/L (96 h) Monir et al. (2016)

4 Cnesterodon decemmaculatus 1.89-2.60 pg/L (96 h) Brodeur et al. (2016)

5 Danio rerio 1.94 (10-dpf) and 3.56 (20-dpf) pg/L (96 h) Rodriguez-Estrada et al. (2016)
6 Oreochromis niloticus 6.2 ng/L (96 h) Haque and Mondal (2016)
7 Labeo rohita 5.0 pg/L (96 h) Ullah (2015)

8 Tor putitora 63.0 ug/L (96 h) Ullah et al. (2015)

9 Heteropneustes fossilis 0.67-1.27 pg/L (72 h) Saha and Kaviraj (2013)
10 Heteropneustes fossilis 3.783 pg/L (96 h) Bhutia et al. (2013)

11 Catla catla 4.43 pg/L (96 h) Vani et al. (2012)

12 Clarias gariepinus 0.25 pg/L (96 h) Akinrotimi et al. (2012)

13 Cirrhinus mrigala 150.0 pg/L (96 h) Vasantharaja et al. (2012)
14 Hypophthalmichthys molitrix 0.917 pg/L (96 h) Shaluei et al. (2012)

15 Rutilus rutilus caspicus 0.627 pg/L (96 h) Shaluei et al. (2012)

16 Cyprinus carpio 250.0 pg/L (96 h) Meenambal et al. (2012)
17 Labeo rohita 0.205 pg/L (24 h) Tiwari et al. (2012)

18 Clarias batrachus 12.0 pg/L (96 h) Kumar et al. (2011a)

19 Danio rerio 0.29 (48 h) and 0.27 mg/L (72 h) Xu et al. (2010)

20 Colisa fasciatus 6.0 ug/L (96 h) Singh et al. (2010)

21 Clarias batrachus 0.21 mg/L (96 h) Begum (2009)
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Table 3 (continued)

S. no. Fish species LCs, References

22 Oreochromis niloticus 5.99 pg/L (96 h) Sarikaya (2009)

23 Oryzias latipes 30.8 (Adult), 38.5 (fry), and 111.4 (embryo) ug/L (48 h) Kim et al. (2008)

24 Clarias gariepinus 0.063 mg/L (96 h) Ayoola and Ajani (2008)

25 Rhamdia quelen 0.193 mg/L (96 h) Borges et al. (2007)

26 Channa punctatus 0.4 mg/L (96 h) Kumar et al. (2007)

27 Cyprinus carpio 0.256-5.074 pg/L (48 h) Aydin et al. (2005)

28 Heteropneustes fossilis 7.20 pg/L (96 h) Mishra et al. (2005)

29 Poecilia reticulata 9.43 ug/L (96 h) Yilmaz et al. (2004)
Fenvalerate

1 Anabas testudineus 472.5 (Static) and 376.0 (Cont. flow) mg/L (96 h) Satyavardhan (2013)

2 Puntius sophore 1.789 (Static) and 1.415 (Cont. flow) mg/L (96 h) Satyavardhan (2013)

3 Cyprinus carpio 2.171 (Static) and 1.775 (Cont. flow) mg/L (96 h) Satyavardhan (2013)

4 Ctenopharyngodon idellus 2.627 (Static) and 2.121 (Cont. flow) mg/L (96 h) Satyavardhan (2013)

5 Clarias batrachus 1.35 pg/L (96 days) Datta and Kaviraj (2011)

6 Heteropneustes fossilis 0.65 pg/L (96 days) Datta and Kaviraj (2011)

7 Labeo rohita 5.36 pug/L (96 h) Prusty et al. (2011)

8 Danio rerio 6.25 pg/L (96 h) Gu et al. (2010)

9 Cyprinus carpio 3.059 pg/L (96 h) Raja et al. (2010)

10 Danio rerio 8.29 pug/L (96 h) Ma et al. (2009)

11 Clarias gariepinus 4.24-2.94 pg/L (96 h) Bhattacharya and Kaviraj (2009)
12 Channa punctatus 2.13 pg/L (96 h) Singh et al. (2007)

13 Catla catla 6.0 ug/L (96 h) Tandon et al. (2005)

14 Clarias gariepinus 250 pg/L (48 h) Sakr et al. (2005)

15 Cirrhinus mrigala 6.0 ug/L (96 h) Mushigeri and David (2004)
Cyhalothrin

1 Prochilodus lineatus 5.0 ug/L (<24 h) Vieira and dos Reis Martinez (2018)
2 Brycon amazonicus 0.65 ug/L (96 h) Venturini et al. (2018)

3 Gambusia affinis 1.107 pg/L (96 h) Giiner (2016)

4 Cyprinus carpio 0.160 pg/L (96 h) Bibi et al. (2014)

5 Labeo rohita 0.7 pg/L (96 h) Dey and Saha (2014)

6 Oreochromis niloticus 2.901 pg/L (96 h) Piner and Uner (2012)

7 Clarias batrachus 5.0 pg/L (96 h) Kumar et al. (2011b)

8 Danio rerio 0.119 pg/L (96 h) Ansari and Ahmad (2010)

9 Channa punctatus 7.92 ug/L (96 h) Kumar et al. (2007)

10 Cirrhinus mrigala 3.0 ug/L (96 h) Velmurugan et al. (2007)

11 Brachydanio rerio 1.93 (I') and 1.94 (M) pg/L (96 h) Wang et al. (2007)

12 Brachydanio rerio 0.27 pg/L (96 h) Sewell and McKenzie (2006)

of the fish, as a compensatory response to the circulating
lymphocytes by the lymphoid tissues, and tissue damage
(Ullah et al. 2019).

Biochemical toxicity

Biochemical parameters are often employed as handy bio-
markers to appraise the toxic effects of different exog-
enous compounds, toxicants, and chemicals including
pesticides, heavy metals, and pharmaceutical drugs on
fish. Different generations of synthetic pyrethroids have

been tested against different fish species, and almost all
of them resulted in varying levels of biochemical toxicity,
for example, deltamethrin induced different biochemical
toxicities in Hypophthalmichthys molitrix including a
marked reduction in the total protein contents in the liver,
gills, muscles, blood, and brain tissues, marked increase
in blood glucose concentration, and significant altera-
tions in the concentration of potassium, sodium, chlo-
ride, total bilirubin, albumin, urea, inorganic phosphate,
and cholesterol in serum (Ullah et al. 2019). Similarly,
the activities of metabolic enzymes including aspartate
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Table 4 Toxic effects of pyrethroids on fish as revealed by different biomarkers

S.no. Fish species

Changes observed

References

Oxidative stress—ROS, LPO

1 Hypophthalmichthys molitrix
2 Danio rerio

3 Prochilodus lineatus

4 Cyprinus carpio

5 Oncorhynchus mykiss

6 Labeo rohita

7 Oreochromis niloticus

8 Tor putitora

9 Sparus aurata

10 Cyprinus carpio

Developmental toxicity

1 Danio rerio

2 Danio rerio

3 Danio rerio

4 Labeo rohita

5 Danio rerio

6 Oncorhynchus mykiss
7 Danio rerio

8 Danio rerio

9 Pimephales promelas
10 Danio rerio

11 Danio rerio

Deltamethrin led to increased reactive oxygen species production
and lipid peroxidation in the brain, liver, gills, and muscles.
The antioxidant enzymes (catalase, peroxidase, superoxide
dismutase, and glutathione reductase) activities were also
increased in these tissues

Deltamethrin induced oxidative stress leading to inhibition of
acetylcholinesterase activity

A-Cyhalothrin induced lipid peroxidation in the liver, gills, brain,
kidney, and muscle tissues along with an alteration in the
activities of glutathione-S-transferase, superoxide dismutase,
catalase, glutathione peroxidase, and glutathione concentration

A-Cyhalothrin induced oxidative stress in terms of lipid peroxi-
dase in liver, gills, and muscles and protein oxidation in the
liver and muscles

Cypermethrin exposure resulted in oxidative stress induction

Cypermethrin exposure resulted in increased LPO (thiobarbituric
acid) in gills, liver, brain, and muscles

Deltamethrin exposure led to oxidative stress in terms of an
increase in malondialdehyde (LPO) in kidneys, liver, and
gills with a decrease in the activities of catalase, superoxide
dismutase, glutathione peroxidase, and glutathione contents in
the tissues

Cypermethrin induced lipid peroxidation in the brain, liver, mus-
cles, and gills at acute concentration

Deltamethrin exposure led to oxidative stress induction leading to
disturbed metabolism and immune status

Deltamethrin increased malondialdehyde level in the hepatopan-
creas with an increase in the activities of glutathione-S-trans-
ferase, catalase, and glutathione reductase

Bifenthrin altered the ryanodine and mTOR receptor-dependent
signaling at the developing stage and also led to delayed hyper-
activity

Deltamethrin exposure induced oxidative stress, apoptosis, and
different morphological alterations at an embryonic stage

Deltamethrin exposure resulted in delayed development and sig-
nificantly increased mortality at 24 and 48 h post-fertilization

Cypermethrin induced developmental deformities and altered
enzymatic activities in the developmental stages

Bifenthrin and A-cyhalothrin disrupted hypothalamus—pituitary—
thyroid axis at an embryonic stage

Bifenthrin disturbed the dopaminergic signaling at the juvenile
stage

Joint exposure to cypermethrin and permethrin induced different
larval stage toxicities

Cypermethrin induced different morphological changes at
embryo—larval stages

Bifenthrin changed the gene transcription at the larval stage

Permethrin and deltamethrin induced different developmental
neurotoxic effects such as craniofacial abnormalities, spasms,
and body curvatures

Bifenthrin induced different morphological changes at embryo—
larval stages

Ullah et al. (2019)

Parlak (2018)

Vieira and dos Reis Martinez (2018)

Clasen et al. (2018)
Kutluyer et al. (2016)
Ullah (2015)

Abdel-Daim et al. (2015)

Ullah et al. (2014)
Guardiola et al. (2014)

Ensibi et al. (2013)

Frank et al. (2018)

Parlak (2018)

Liu et al. (2018)

Dawar et al. (2016)

Tu et al. (2016)

Crago and Schlenk (2015)
Yang et al. (2014)

Shi et al. (2011)

Beggel et al. (2011)

DeMicco et al. (2010)

Jin et al. (2009)
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Table 4 (continued)

S. no. Fish species

Changes observed

References

Neurotoxicity

1 Hypophthalmichthys molitrix

2 Alburnus tarichi

3 Channa punctatus

4 Danio rerio

5 Jenynsia multidentata
6 Oreochromis niloticus

Danio rerio

8 Labeo rohita

9 Tor putitora

10 Rhamdia quelen

11 Cyprinus carpio

12 Danio rerio

Hematological toxicity

1 Hypophthalmichthys molitrix
2 Alburnus tarichi

3 Prochilodus lineatus

4 Cyprinus carpio

5 Salmo trutta fario

6 Tor putitora

Deltamethrin inhibited acetylcholinesterase activity in the brain,
muscle, and liver tissues and induced different behavioral
inconsistencies such as erratic swimming, jumping, hyper- or
hypo-activeness, increased air gulfing, rapid gill movement, and
equilibrium loss

Cypermethrin mediated different changes in behavior such as
hyperexcitability, balance loss, vertical position adaptation,
rapid mouth open and gill movement, and irregular swimming,
with an increase in cortisol (stress hormone)

Deltamethrin inhibited acetylcholinesterase activity in the brain,
muscles, and gills and led to different behavioral inconsisten-
cies including hyperactivity, balance loss, elevated surface
activity, convulsions, and increased rate of opercular activity

Cypermethrin exposure resulted in significant loss of motor
coordination and led to erratic swimming, frequent freezing
behavior, and loss of the voluntary control

Cypermethrin changed the acetylcholinesterase activity and
altered the swimming behavior

Cypermethrin exposure altered the swimming pattern

Deltamethrin disturbed acetylcholinesterase activity and induced
different behavioral toxicities

Cypermethrin mediated various behavioral alterations such as
jumping, adapting vertical position before death, hyper- and
hypo-activity, and altered swimming pattern

Cypermethrin induced different behavioral changes including
erratic swimming, hyper- or hypo-activeness, equilibrium loss,
and increased air gulfing and operculum beats

Cypermethrin exposure leads to different behavioral alterations
such as dyspnea, spiral swimming, swimming alteration, loss of
balance, and upright swimming

A-Cyhalothrin inhibited acetylcholinesterase activity in the brain,
liver, and muscle tissues at both acute and subacute concentra-
tion

Fenvalerate induced apoptosis in the brain

Deltamethrin exposure altered hematological parameters includ-
ing red blood cells, white blood cells, hemoglobin, hematocrit,
packed cell volume, mean corpuscular volume, mean corpuscu-
lar hemoglobin, and mean corpuscular hemoglobin concentra-
tion

Cypermethrin mediated changes in hematology such as decreased
red blood cells, hemoglobin, and hematocrit

A-Cyhalothrin altered red blood cells, white blood cells, and
hemoglobin

Permethrin decreased red blood cells, hemoglobin, and packed
cell volume at both lethal and sublethal concentrations, whereas
it increased white blood cells, mean corpuscular volume, mean
corpuscular hemoglobin, and mean corpuscular hemoglobin
concentration at both the concentrations

Deltamethrin decreased white blood cells, hemoglobin, hema-
tocrit, mean corpuscular hemoglobin, and mean corpuscular
volume, while it increased the number of red blood cells

Cypermethrin induced changes in white blood cells and red blood
cells

Ullah et al. (2019)

Ozok et al. (2018)

Singh et al. (2018b)

Nema and Bhargava (2018)

Bonansea et al. (2016)

Haque and Mondal (2016)
Ren et al. (2016)

Ullah (2015)

Ullah et al. (2014)

Montanha et al. (2014)

Bibi et al. (2014)

Gu et al. (2010)

Ullah et al. (2019)

Ozok et al. (2018)
Vieira and dos Reis Martinez (2018)

Gopala Rao et al. (2017)

Karatas (2016)

Ullah et al. (2015)
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Table 4 (continued)

S. no. Fish species

Changes observed

References

7 Rhamdia quelen

8 Catla catla

9 Catla catla

10 Labeo rohita

11 Cyprinus carpio

Biochemical toxicity

1 Hypophthalmichthys molitrix
2 Prochilodus lineatus

3 Brycon amazonicus

4 Cyprinus carpio

5 Labeo rohita

6 Labeo rohita

7 Tor putitora

8 Rhamdia quelen

9 Labeo rohita

10 Oryzias latipes

Physiological toxicity

1 Hypophthalmichthys molitrix
2 Alburnus tarichi

3 Prochilodus lineatus

4 Carassius carassius

Cypermethrin exposure altered erythrocytes, total leukocytes,
hemoglobin, hematocrit, thrombocytes, neutrophils, monocytes,
lymphocytes, basophil, and eosinophil

Cypermethrin decreased the hematological indices including
hemoglobin, total leukocyte counts, total erythrocyte count, and

hematocrit

Deltamethrin disrupted hematopoiesis and led to a decrease in

hematological parameters

Fenvalerate affected the hematological parameters including red
blood cells, white blood cells, hemoglobin, and hematocrit,
mean corpuscular volume, mean corpuscular hemoglobin,
mean corpuscular hemoglobin concentration, and nitroblue

tetrazolium test

Bifenthrin induced different alterations in hematology

Deltamethrin induced biochemical toxic effects by altering

the protein contents in blood, liver, gills, muscles, and brain
tissues; blood glucose, serum biochemistry such as sodium,
potassium, chloride, total bilirubin, albumin, cholesterol, urea,

and inorganic phosphate

A-Cyhalothrin altered the concentration of glucose, sodium,
potassium, chloride, calcium, and magnesium

Cypermethrin increased branchial Na*/K* ATPase activity due to
MRC proliferation because of increased cortisol

A-Cyhalothrin exposure resulted in redox imbalanced and conse-
quently led to different biochemical alterations such as inhibited
acetylcholinesterase in the brain, and increased catalase and

glutathione-s-transferase activities

Cypermethrin induced changes in total proteins and the activi-
ties of different enzymes including superoxide dismutase,
peroxidase, glutathione peroxidase, glutathione-S-transferase,

catalase, and glutathione reductase

Deltamethrin increased alkaline phosphatase and decreased acid
phosphatase and acetylcholine esterase activities in the liver

and kidney

Cypermethrin induced altered total protein contents, antioxidant

enzymes activities, and blood glucose

Cypermethrin exposure mediated alterations in plasma protein

concentration

Fenvalerate affected the activities of superoxide dismutase in
liver and gills, and catalase in gills. Blood glucose level, serum
creatinine, and triglycerides were increased, while serum total
protein, globulin, and albumin were decreased

Permethrin altered the concentration of vitellogenin protein in

the liver

Deltamethrin disturbed protein and glucose metabolism in brain,

liver, gills, and muscles tissues

Cypermethrin significantly increased the activities of lactate
dehydrogenase, alanine aminotransferase, and aspartate ami-

notransferase

A-Cyhalothrin altered the activities of Ca*t?ATPase,
Mg*2ATPase, and Na*K*ATPase in the gills

Deltamethrin disturbed the heart function in vitro by disturbing/
irregularities of the rhythm and rate of atrial beating, atrial
contraction, electrical activity, and affecting sodium channels in

the heart up to 48%

Montanha et al. (2014)

Vani et al. (2012)

Vani et al. (2011)

Prusty et al. (2011)

Velisek et al. (2009a)

Ullah et al. (2019)

Vieira and dos Reis Martinez (2018)
de Moraes et al. (2018)

Clasen et al. (2018)

Ullah (2015)

Suvetha et al. (2015)

Ullah et al. (2014)
Montanha et al. (2014)

Prusty et al. (2011)

Nillos et al. (2010)

Ullah et al. (2019)

Ozok et al. (2018)

Vieira and dos Reis Martinez (2018)

Haverinen and Vornanen (2016)
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Table 4 (continued)

S. no. Fish species

Changes observed

References

5

10

Labeo rohita

Oreochromis niloticus

Rhamdia quelen

Anabas testudineus

Labeo rohita

Pimephales promelas

Cypermethrin exposure disturbed metabolic activities in brain,
liver, gills, and muscles tissues

Deltamethrin disturbed the metabolic activities in the serum by
altering the activities of alkaline phosphatase, aspartate ami-
notransferase, and alanine aminotransferase

Cypermethrin exposure mediated alterations in the metabolic
activities and altered the activities of alanine aminotransferase,
aspartate aminotransferase, and alkaline phosphatase

Permethrin reduced SDH level in the liver and muscle tis-
sues, whereas deltamethrin decreased the level of aspartate
aminotransferase in the liver and muscle tissues and alanine
aminotransferase in the muscles

Fenvalerate affected the activities of aspartate aminotransferase,
alanine aminotransferase, alkaline phosphatase, glutamic pyru-
vic transaminase, and glutamic oxaloacetic transaminase

Bifenthrin decreased the transcription of the gene related to stress
response, growth, and metabolism

Reproductive toxicity and endocrine disruptive toxicity

1

10

11

12

13

Danio rerio

Danio rerio

Oncorhynchus mykiss
Mugil cephalus

Heteropneustes fossilis

Danio rerio

Menidia beryllina
Oncorhynchus mykiss
Labeo rohita
Oncorhynchus mykiss
Menidia beryllina

Heteropneustes fossilis

Salmo trutta

Bifenthrin induced alterations in the dopaminergic and estrogenic
pathways at an embryo and larval stages

Permethrin, f-cypermethrin, and their metabolites (PBCOH,
PBCHO, and PBCOOHR) altered the gene expression involved
in thyroid and innate immune systems

Cypermethrin exposure resulted in the changed quality of sper-
matozoa

The mixture (mainly cyfluthrin and bifenthrin) altered the vitel-
logenin genes expression in the liver of both female and male

Cypermethrin exposure changed the histoarchitecture of the
ovary, e.g., cytoplasmic liquefaction, atretic follicle, granulosa
layer invasion, ovarian wall degeneration, and inter-follicular
spaces

Bifenthrin and A-cyhalothrin exposure resulted in thyroid endo-
crine disruption

Bifenthrin disrupted estrogen signaling as well as decreased
reproductive output in terms of fertilized egg/female

A-Cyhalothrin altered the quality and antioxidant responses of
spermatozoa

Deltamethrin exposure resulted in an increased level of prolactin
and plasma cortisol at both acute and subacute concentration

Bifenthrin increased ovarian follicle diameter and plasma estra-
diol (E2) and reduced gonadosomatic index

Bifenthrin exposure resulted in an increased level of choriogenin
(estrogen-responsive protein) at the juvenile stage

Cypermethrin disturbed follicular wall and spermatogenic cells
and induced changes in the plasma estradiol-17f, sperm motil-
ity, and 11-ketotestosterone

Cypermethrin exposure disturbed the reproductive behavior, such
as less courting events, lower strippable milt volume, spending
less time near females, and significantly lowered 11-ketotestos-
terone

Ullah (2015)

Abdel-Daim et al. (2015)

Montanha et al. (2014)

Sapana Devi and Gupta (2014)

Prusty et al. (2011)

Beggel et al. (2011)

Bertotto et al. (2018)

Xu et al. (2018)

Kutluyer et al. (2016)
Zheng et al. (2016)

Monir et al. (2016)

Tu et al. (2016)
Brander et al. (2016)
Kutluyer et al. (2015)
Suvetha et al. (2015)
Forsgren et al. (2013)
Brander et al. (2012)

Singh and Singh (2008)

Jaensson et al. (2007)
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Table 4 (continued)

S. no. Fish species

Changes observed

References

Histopathological-morphological toxicity

1 Hypophthalmichthys molitrix
Danio rerio

3 Colossoma macropomum

4 Danio rerio

5 Pangasianodon hypophthalmus

6 Tor putitora

7 Clarias batrachus

8 Sparus aurata

9 Aphanius dispar

10 Oreochromis niloticus

11 Oncorhynchus mykiss

12 Heteropneustes fossilis

13 Oreochromis niloticus

Deltamethrin exposure resulted in different histomorphological
alterations in the brain, e.g., hemorrhage, infiltration, neuronal
degeneration, and spongiosis; liver, e.g., congestion, hemo-
siderosis, increased sinusoidal spaces, fibrosis, and pycnosis;
gills, e.g., disruption of arch, epithelium, and lamellae, atrophy
of lamellae, and desquamation of goblet cells; and intestine,
e.g., shredding of mucosal cells, disruption of mucosal cells
and intestinal mucosa, and increased goblet cells

Deltamethrin induced different developmental malformations
Deltamethrin induced different histopathological damages in the

gills

Deltamethrin led to different morphological alterations such as
shorter body length, larger head-body angle, and smaller eyes

Cypermethrin exposure induced different changes in the histo-

logical architecture of gills and liver

Cypermethrin induced different histopathological damage to the

brain, liver, and gills

A-Cyhalothrin induced different histo-architectural damages in

the testes, liver, and kidneys

Deltamethrin resulted in deleterious morphological changes in

the liver

Deltamethrin exposure led to different histopathological changes
in the gills such as secondary lamellae fusion, epithelium lifting
(lamellar), vacuolization, and desquamation

Deltamethrin mediated different histopathological lesions in the
liver, e.g., necrosis, pycnosis, and hypertrophy, and gills, e.g.,
epithelial lifting, hypertrophy of mucous cells, and hyperplasia

Bifenthrin induced different histopathological alterations

Cypermethrin induced different histological alterations in the

gonads, liver, and gonadotrophic cells

Deltamethrin exposure resulted in different histopathological
lesions in the gills, e.g., fusion of secondary lamellae, gills
hyperemia, and telangiectasis, and liver, e.g., hydropic degen-

erations

Molecular toxicity: DNA damage/genotoxicity

1 Hypophthalmichthys molitrix
2 P. lineatus

3 Danio rerio

4 Danio rerio

5 Menidia beryllina

6 Labeo rohita

7 Prochilodus lineatus

8 Oreochromis niloticus

9 Gambusia affinis

10 Channa punctata

11 Oncorhynchus mykiss

12 Danio rerio

Deltamethrin damaged DNA in peripheral blood erythrocytes
A-Cyhalothrin induced DNA damage in erythrocytes
Deltamethrin exposure leads to miss expression of ntl, shh, and

krox20

Bifenthrin and A-cyhalothrin up-regulated the following genes:
CRH, TTR, Dio2, UGT1ab, TRa, Pax8, and TSHf

Bifenthrin down-regulated several estrogen-associated transcripts
Cypermethrin induced DNA damage in blood cells
Cypermethrin induced in vivo DNA damage in the gills
Deltamethrin mediated micronuclei formation in the erythrocytes
A-Cyhalothrin exposure led to micronuclei induction and nuclear

abnormalities

Cypermethrin induced genotoxicity due to induction of reactive
oxygen species-mediated oxidative damage

Permethrin altered VTG-mRNA expression in hepatocytes
Fenvalerate altered the expression of dIx2 and oggl genes

Ullah et al. (2019)

Parlak (2018)
Cunbha et al. (2018)

Liu et al. (2018)
Monir et al. (2015)
Ullah et al. (2015)
Singh et al. (2015)
Guardiola et al. (2014)

Al-Ghanbousi et al. (2012)

Kan et al. (2012)

Velisek et al. (2009b)

Singh and Singh (2008)

Yildirim et al. (2006)

Ullah et al. (2019)
Vieira and dos Reis Martinez (2018)
Liu et al. (2018)

Tu et al. (2016)

Brander et al. (2016)

Ullah (2015)

Poletta et al. (2013)

Kan et al. (2012)

Gokalp Muranli and Giiner (2011)

Ansari et al. (2011)

Nillos et al. (2010)
Gu et al. (2010)
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aminotransferases, alanine aminotransferases, lactate
dehydrogenases, and glutamate dehydrogenases, and
concentration of whole-body cortisol were significantly
increased.

A number of well-documented studies revealed that
different esters of synthetic pyrethroids induced differ-
ent toxic impacts on the biochemical indices of vari-
ous fish species, for example, permethrin altered the
vitellogenin protein’s concentration in the liver of Ory-
zias latipes (Nillos et al. 2010), fenvalerate increased
blood glucose level, serum creatinine, and triglyceride
and reduced total protein, globulin, and albumin in the
serum of Labeo rohita (Prusty et al. 2011), cypermethrin
decreased total proteins in the muscles, gills, brain, and
liver and increased blood glucose in Tor putitora (Ullah
et al. 2014), and deltamethrin increased alkaline phos-
phatase and decreased acid phosphatase in the liver and
kidney of Labeo rohita (Suvetha et al. 2015). A number
of such other changes have been reported for different fish
species exposed to various synthetic pyrethroids such as
cypermethrin-exposed Rhamdia quelen (Montanha et al.
2014) and Brycon amazonicus (de Moraes et al. 2018) and
A-cyhalothrin-exposed Prochilodus lineatus (Vieira and
dos Reis Martinez 2018).

Reproductive and endocrine disruptive toxicity

The reproductive toxic effects and endocrine disrupting
potential of synthetic pyrethroids are widely studied.
They are known as endocrine disruptors, for example,
they interfere with the receptors of steroid hormone, and
exhibit anti-mineralocorticoid, anti-glucocorticoid, and
anti-estrogenic effects (Zhang et al. 2016, 2018). Bifen-
thrin disrupted the development of testis, inhibited the
sperm maturation, delayed spermatocyte development, and
reduced testosterone and 17p-estradiol in Sebastiscus mar-
moratus (Li et al. 2017), decreased gonadosomatic index
and increased ovarian follicle diameter and 17p-estradiol
in the plasma of Oncorhynchus mykiss (Forsgren et al.
2013), and significantly decreased the reproductive out-
put of Menidia beryllina (Brander et al. 2016). Similarly,
several studies documented different toxic effects of differ-
ent pyrethroids on reproduction and endocrine disruption
in different fish species, such as altering the dopaminergic
and estrogenic pathways in Danio rerio (Bertotto et al.
2018), changing the spermatozoa quality in Oncorhynchus
mykiss (Kutluyer et al. 2016), denaturing the structure of
the ovaries in Heteropneustes fossilis (Monir et al. 2016),
and up-regulating the vitellogenin gene expression in
Oncorhynchus mykiss (Crago and Schlenk 2015), Pime-
phales promelas (Beggel et al. 2011), and Dario rerio (Jin
et al. 2009).

Histomorphological and anatomical toxicity

Histopathological assessment in response to exogenous
toxicants, environmental stressors, and abrupt deleterious
environmental change is a powerful, useful, and key bio-
marker in ecotoxicological studies. It emerged as a key
parameter in chemical risk assessment and safety studies
using fish as a model organism because it is rapid and can
be applied to a number of fish tissues such as kidneys,
intestines, brain, gills, and liver. Moreover, it is a more
sensitive biomarker than a single biochemical response
because the histological changes reveal a transition of bio-
organization from individual-level biochemical effect at
a lower level to population-level effect at a higher level
(Ullah et al. 2018a). For histopathological investigation,
different important tissues of the fish are employed based
on their significance and objective of the study. Gills are
studied because of their involvement in different major
functions including excretion, respiration, osmoregulation,
acid-base balance, being primary contact organ to ambi-
ent water having the toxicants, and continuously exposed
to the exogenous chemicals. Liver histopathology is often
studied in aquatic toxicology because of being the detoxi-
fication center. The histopathological alterations in the
intestine reveal typical stress induction in fish. Similarly,
the histomorphological changes in the brain of fish can
display a different level of severity, more specifically in
response to synthetic pyrethroids because of their lipophi-
licity and efficient accumulative and absorptive capability
of the fish brain.

A number of well-documented research studies demon-
strated synthetic pyrethroids induced histomorphological
alterations in different tissues of the exposed species of fish,
for example, deltamethrin mediated different histopathologi-
cal changes in the liver such as congestion, sinusoidal dila-
tion, vacuolation, inflammatory cell accumulation, hemosi-
derosis, and cellular shrinkage, in the gills such as secondary
lamellae folding, epithelium disruption, epithelium fusion,
calcium accumulation, secondary lamellae detachment,
secondary lamellae degeneration, and secondary lamellae
fusion, in the brain such as spongiosis, neuronal degenera-
tion, discoloration, and infiltration, and in the intestine such
as disruption of mucosal cells, goblet cells increase, necro-
sis, and mucosal cells shredding of Hypophthalmichthys
molitrix (Ullah et al. 2019). Similarly, a number of other
histomorphological changes are observed in different tis-
sues of different fish species in response to different syn-
thetic pyrethroids, such as cypermethrin-exposed Tor puti-
tora (Ullah et al. 2015) and Pangasianodon hypophthalmus
(Monir et al. 2015), deltamethrin-exposed Oreochromis
niloticus (Kan et al. 2012), Aphanius dispar (Al-Ghanbousi
et al. 2012), Cyprinus carpio (Staré et al. 2015), Danio rerio
(Parlak 2018), and Colossoma macropomum (Cunha et al.
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2018), and bifenthrin-exposed Oncorhynchus mykiss (Vel-
isek et al. 2009b).

Molecular toxicity

There is a growing body of emerging evidence, depicting
the molecular toxicological impacts of synthetic pyrethroids
on fish. Synthetic pyrethroids-induced DNA damage is well
studied in different fish species, for example, cypermethrin
induced genotoxicity in Channa punctatus (Ansari et al.
2011) and DNA damage in the gills of Prochilodus lineatus
(Poletta et al. 2013) and in the erythrocyte of Labeo rohita
(Ullah 2015) and A-cyhalothrin induced DNA damage in the
blood erythrocyte Prochilodus lineatus (Vieira and dos Reis
Martinez 2018). Synthetic pyrethroids-mediated micronuclei
induction is also well studied, for example, A-cyhalothrin
exposure led to nuclear abnormalities and induced micro-
nuclei formation in Gambusia affinis (Gokalp Muranli and
Giiner 2011) and deltamethrin induced micronuclei forma-
tion in the erythrocyte of Oreochromis niloticus (Kan et al.
2012). There is also enough evidence regarding synthetic
pyrethroids-mediated alterations in gene/mRNA expression,
for example, permethrin altered VTG-mRNA expression in
the hepatocytes of Oncorhynchus mykiss (Nillos et al. 2010).
Moreover, research revealed that synthetic pyrethroids up-
regulate or down-regulate several transcripts or genes, for
example, bifenthrin down-regulated several estrogen-asso-
ciated transcripts in Menidia beryllina (Brander et al. 2016).

Mechanism of action of synthetic
pyrethroids

Synthetic pyrethroids adapt different mechanisms of tox-
icity; however, the primary mechanism is neurotoxicity or
intoxicating the nervous system of the fish. Figure 2 shows a
summary of neurotoxicity induction in response to synthetic
pyrethroids and the leading subtle consequences. The sche-
matic presentation of the mechanism of action of synthetic
pyrethroids is provided in Fig. 3. Synthetic pyrethroids such
as cypermethrin form cyanohydrin, which is decomposed
into aldehydes and cyanides and subsequently results in the
production of reactive oxygen species (Ullah et al. 2018b).
Reactive oxygen species induce lipid peroxidation, increase
oxidative stress leading to oxidative damage, and increase
the concentration of calcium in the cytosol which in turn
leads to cytotoxicity and genotoxicity in fish (Ullah 2015).
Synthetic pyrethroids layer on the nerve cells and hinder
the sodium channels during repolarization, which lead to
an unconstrained depolarization and disturbed transmission
of the driving forces. The adverse impacts of the synthetic
pyrethroids are mainly attributed to their neurotoxic effects
linked with the pathological retention of acetylcholine in the
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synaptic gaps and inhibition of acetylcholinesterase, giving
rise to multiple nerve impulses and consequently leading
to decreased cholinergic transmission. Moreover, exposure
to synthetic pyrethroids results in trans-activated p53 lead-
ing to induction of MiR-200 and consequently resulting in
apoptosis. Similarly, synthetic pyrethroids change the mito-
chondrial proteome, leading to mitochondrial dysfunction
and subsequently leading to apoptosis, whereas the induced
oxidative stress ultimately results in nigrostriatal dopamin-
ergic neurodegeneration (Ullah et al. 2018b).

Control and prevention of synthetic
pyrethroids

In order to minimize the use of synthetic pyrethroids, an
adaptation of proper strategies and practicing proper man-
agement should be ensured. Synthetic pesticides should
be phased out gradually and continuously till completely
phased out. In order to reduce potential risks, ecological
farming should be adopted instead of industrial agricul-
ture. Multi-level approaches should be adapted for crops
protection, rather than exclusively depending on pesticides.
This will elevate landscape heterogeneity, increase suitable
habitats for pollinators, and control pests naturally or bio-
logically. Vegetation should be actively managed, which will
increase functional biodiversity. Crops should be types-wise
and cultivar-wise rotated to increase soil fertility and make
crops resistant to the pest. Natural agents should be used for
bio-control such as the introduction of beneficial insects,
viruses, bacteria, and nematodes. This will also improve
crop protection (Douglas and Tooker 2015).

Control and preventive measures
against pesticides

Pesticides should be employed according to the regulation
and should be used by following the stipulated regulations.
Pesticides risk assessment and safety, biopesticides use in
agriculture, and biotechnological advancement of agricul-
ture should be exclusively included in future plans. The
advanced form of constructed wetlands should be employed,
which emerged as a more reliable management approach and
treatment system for alleviating different nonpoint sources
of pesticides including agricultural runoffs and draining.
Through this advance system of wetlands, pesticides are
evacuated via different processes such as biological pro-
cesses including plant absorption or metabolism, physical
processes including absorption, sedimentation, co-precipi-
tation, and precipitation, chemical processes, e.g., hydroly-
sis, photolysis, cation exchange, oxidation, and reduction,
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and biochemical processes such as microbial deprivation
(Vymazal and Bfezinova 2015).

Pesticides use should be avoided and restricted at local
and home level via using lesser or no cosmetics. Biologi-
cal pest management should be adapted. Pesticides should
be locked and stored in childproof containers, cupboards,
or cabinets. Pesticides with the least hazardous impacts
and dangers should be used. The pesticides users, exposed
masses, applicators, dealers, and farmers should be educated
properly. They should be guided regarding manufacturers’
suggestions, instructions, protection equipment, and avoid-
ing exposure of pregnant women, infants, toddlers, and chil-
dren to the pesticides. Similarly, at the community level,
organic farming and integrated pest management should be
adopted at public buildings such as schools, hospitals, and
public parks and mass awareness programs including work-
shops, seminars, and symposia should be arranged. The gov-
ernment should instruct children, pesticides dealers, pesti-
cides applicators, pesticides users, and general masses about
the hostile effects of pesticides, at the national level. The
environmental protection and public health organizations
should monitor and regularly assess pesticides concentration
in the local environmental media. They should restrict the
use of illegal and banned pesticides. Regular pesticide-based
poisoning surveillance and epidemiological studies should
be a part of their plan. Permissible limits for the pesticides
should be established. These organizations should try to
restrict pesticide use within their defined limits and should
establish pesticide poisoning control and emergency center.

Conclusion

Pyrethroids have been reported from the soil, cash crops,
land or terrestrial organisms, water, sediments, and aquatic
organisms including fish. Therefore, it is threatening at a fish
biodiversity standpoint, as pyrethroids implicated popula-
tion decline of fish has been confirmed by various studies in
the past. Moreover, different aquatic- and ecotoxicological
studies revealed the severe toxic effects of synthetic pyre-
throids on fish at various biological levels such as at molecu-
lar, cellular, histological, organismal, and population level.
These studies provide a future window for further studies.
To comprehensively appraise the hostile impacts of synthetic
pyrethroids and explain the underlying mechanism more
deeply, studies that can possibly link these different levels of
biological impacts are highly recommended. Furthermore,
toxicological studies regarding individual enantiomers of the
pyrethroids should be undertaken. The knowledge from such
experiments that are based on the enantioselective toxicity
and chirality of the pyrethroids will help in developing envi-
ronment-friendly pyrethroids. This will also enrich activity

of pyrethroids against target insects without posing severe
hostilities on nontarget organisms including fish.
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